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Chapter 8. INTRACTABILITY

Actual number of steps taken by an algorithm and the actual run times 
will depend on specific problem instance. 

 So let us aim to find an upper bound on the number of steps taken by an 
algorithm.

A step is an arithmetic operation like addition, subtraction, 
multiplication, division, comparison, assignment, etc.

As the problem size (that is, number of nodes and arcs for the case of 
network problems) increases, the run time and the number of steps will 
obviously increase.

 So our upper bounds on the run times will be functions of number of 
nodes (n) and number of arcs (m).

We are quite satisfied if we are within a constant factor.  Otherwise the 
task becomes too complex.



Chapter 8. INTRACTABILITY

We say that an algorithm runs in polynomial time if the number of 
steps taken by the algorithm is bounded above by a polynomial in 𝑛𝑛 and 
𝑚𝑚.

We use big ‘𝑶𝑶’ to indicate upper bounds.

For example, we may say that an algorithm is 𝑶𝑶 𝒏𝒏𝟐𝟐 . That means the 
algorithm takes at most c𝑛𝑛2 steps for some constant 𝑐𝑐. E.g., at most 
14𝑛𝑛2 steps.

We say that an algorithm runs in exponential time whenever it does not 
run in polynomial time.



8. INTRACTABILITY
⤷ Big-O notation describes the asymptotic upper bound of f(n)

 f(n)= O(g(n)): iff there exist positive constants c and n0 such that 
f(n)≤ cg(n) for all n ≥ n0

O-notation to give an upper bound on a function.



8. INTRACTABILITY
⤷ “Easy” Problems

 Sorting a list of n numbers:  [42, 3, 17, 26, … , 100]

 Multiplying two n x n matrices:

3  5  2  7
1  6  8  9
2  4  6 10
9  3  2 12

( ) 1  5  5  4
5 12 8  6
7  6  1  5
9 23 5  8

( ) = ( )
n

n

n n

n

n log2 n
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⤷ “Easy” Problems(cont.) 
 The Shortest Path Problem (i.e. “Google Maps”) 

Edsgar Dijkstra

https://www.cs.hmc.edu/~cs5grad/cs5/LectureSlides/class07-black-
16-functional5.pptx

Depending on implementation:
O(|V|2) or  O(|E| + |V|Log|V|) 

https://www.cs.hmc.edu/%7Ecs5grad/cs5/LectureSlides/class07-black-16-functional5.pptx


8. INTRACTABILITY
⤷ “Easy” Problems(cont.) 

 “Polynomial Time” = “Efficient”

n, n2, n3, n4, n5,…

How about 
something like n 
log2 n ? sorting

 matrix multiplication
 shortest paths

The “class” P
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⤷ “Hard” Problems

 The Travelling Salesperson Problem
New York

Paris

San Francisco

Claremont

366

5625

1545

4664
5868

Brute Force?  Greed?

2417

6060

2566

3627
5563



8. INTRACTABILITY
⤷ The Hamiltonian Path Problem

Rome, GA

Athens, GA

Homer, GA

Damascus, GA
Bethlehem, GA

Those are some 
peachy names!
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⤷ n2 Versus 2n

The Geoff-O-Matic performs 109 operations/sec

n2

2n

n!

n = 10 n = 30 n = 50 n = 70

100
< 1 sec

900
< 1 sec

2500
< 1 sec

1024
< 1 sec

109

1 sec
1015

11.6 days

4900
< 1 sec

1021

31,688 
years

< 1 sec 1016 years 1057 years 1093 years



8. INTRACTABILITY
⤷ Tractability

 Some problems are intractable: 
as they grow large, we are unable to solve them in reasonable 
time

• Not in polynomial time: O(2n), O(n!), O(nn), 

What constitutes reasonable time? 

• Standard working definition: polynomial time

• On an input of size n the worst-case running time is O(nk) 
for some constant k

• Polynomial time: O(1), O(n lg n), O(n2), O(n3), 
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⤷ Optimization/Decision Problems

Optimization Problems
• An optimization problem is one which asks, “What is the 

optimal solution to problem X?”
• Examples:
Maximal Matching
Traveling Salesperson
Minimum Spanning Tree

Decision Problems
• An decision problem is one with yes/no answer
• Examples:
Does a graph G have a MST of weight ≤ W?



8. INTRACTABILITY
⤷ Optimization/Decision Problems (cont.) 

An optimization problem tries to find an optimal solution

A decision problem tries to answer a yes/no question

Many problems will have decision and optimization versions

• Eg: Traveling salesman problem

optimization: find hamiltonian cycle of minimum weight

decision: is there a hamiltonian cycle of weight ≤ k

 Some problems are decidable, but intractable: 
as they grow large, we are unable to solve them in reasonable time

• Is there a polynomial-time algorithm that solves the problem?



8. INTRACTABILITY
⤷ The class P

The class P consists of those problems that are solvable 
in polynomial time.

More specifically, they are problems that can be solved 
in time O(nk) for some constant k, where n is the size of 
the input to the problem.

The key is that n is the size of input.

“Easy” Problems



8. INTRACTABILITY

⤷ The class P (cont.) 

P: the class of decision problems that have polynomial-time 
deterministic algorithms.  

• That is, they are solvable in O(p(n)), where p(n) is a polynomial on n
• A deterministic algorithm is (essentially) one that always computes 

the correct answer

Why polynomial?
• if not, very inefficient
• nice closure properties 
the sum and composition of two polynomials are always 

polynomials too



8. INTRACTABILITY
⤷ Complexity class P

Deterministic in nature

 Solved by conventional computers in polynomial time

• O(1) Constant

• O(log n) Sub-linear

• O(n) Linear

• O(n log n) Nearly Linear

• O(n2) Quadratic

Polynomial upper and lower bounds



8. INTRACTABILITY
⤷ Sample class P

 Shortest Path Dijkstra algorithm 
O(n2). 

Eulerian path O(E)

MST O(ElogV)

Merge Sort

Huffman Algorithm: Constructing 
the Optimal Binary (Huffman) Tree.

Others



8. INTRACTABILITY
⤷ NP

NP is not the same as non-polynomial 
complexity/running time. NP does not stand for not 
polynomial.

NP = Non-Deterministic polynomial time

NP means verifiable in polynomial time

Verifiable?

• If we are somehow given a ‘certificate’ of a solution 
we can verify the legitimacy in polynomial time



8. INTRACTABILITY
⤷ Sample Problems in NP

MST 
Maximal matching
Hamiltonian Cycle (Traveling Salesman)
Graph Coloring



8. INTRACTABILITY
⤷ Hamiltonian cycles

Determining whether a directed graph has a Hamiltonian 
cycle does not have a polynomial time algorithm (yet!)

However if someone was to give you a sequence of vertices, 
determining whether or not that sequence forms a 
Hamiltonian cycle can be done in polynomial time.

Therefore Hamiltonian cycles are in NP.

“Hard” Problem?



8. INTRACTABILITY
⤷ NP problems

Graph theory has these fascinating (annoying?) pairs of 
problems

• Shortest path algorithms?

• Longest path is NP complete (we’ll define NP 
complete later)

• Eulerian tours (visit every vertex but cover every 
edge only once, even degree etc). Solvable in 
polynomial time!

• Hamiltonian tours (visit every vertex, no vertices can 
be repeated). NP complete 



8. INTRACTABILITY
⤷ Review: P And NP problems

P = set of problems that can be solved in polynomial time

NP = set of problems for which a solution can be verified in 
polynomial time

Clearly P ⊆ NP

Open question: Does P = NP?

• Most suspect not

• An August 2010 claim of proof that P ≠ NP, by Vinay 
Deolalikar, researcher at HP Labs, Palo Alto, has flaws



8. INTRACTABILITY
⤷ NP-complete problems

A decision problem D is NP-complete iff

1）D ∈ NP

2）Every problem in NP is polynomial-time reducible 
to D



8. INTRACTABILITY
⤷ Reduction

A problem R can be reduced to another problem Q if any 
instance of R can be rephrased to an instance of Q, the solution 
to which provides a solution to the instance of R

• This rephrasing is called a transformation

 Intuitively: If R reduces in polynomial time to Q, R is “no harder 
to solve” than Q

Example: lcm(m, n) = m * n / gcd(m, n), 

lcm(m,n) problem is reduced to gcd(m, n) problem
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⤷ Polynomial-Time Reducibility

 Language L is polynomial-
time reducible to language 
M if there is a function 
computable in polynomial 
time that takes an input x of 
L and transforms it to an 
input f(x) of M, such that x
is a member of L if and only 
if f(x) is a member of M.
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⤷ NP-Hard and NP-Complete
 If R is polynomial-time reducible to Q, we denote this R ≤p Q

 Definition of NP-Hard and NP-Complete: 

• If all problems R ∈ NP are polynomial-time reducible to Q, then 
Q is NP-Hard

Note:  An NP-Hard problem need not be NP.

• An NP-Hard problem is at least as hard as the NP-complete 
problems.

• We say Q is NP-Complete if Q is NP-Hard 
and Q ∈ NP

 If R ≤p Q and R is NP-Hard, Q is also NP-Hard (why?)
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⤷ NP-Hard and NP-Complete (cont.) 

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg
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⤷ NP-Hard and NP-Complete (cont.) 

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

Verifiable in 
polynomial time

Not verifiable in 
polynomial time

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg


Chapter 8. INTRACTABILITY • Brief summary

Objective :

Key Concepts ：
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