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Chapter 8. INTRACTABILITY Il 5% 25 4%

&2 TONGJISEM

m Actual number of steps taken by an algorithm and the actual run times
will depend on specific problem instance.

m So let us aim to find an upper bound on the number of steps taken by an
algorithm.

m A step is an arithmetic operation like addition, subtraction,
multiplication, division, comparison, assighment, etc.

m As the problem size (that is, number of nodes and arcs for the case of
network problems) increases, the run time and the number of steps will
obviously increase.

m So our upper bounds on the run times will be functions of humber of
nodes (n) and number of arcs (m).

m We are quite satisfied if we are within a constant factor. Otherwise the
task becomes too complex.
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&2 TONGJISEM

m We say that an algorithm runs in polynomial time if the humber of
steps taken by the algorithm is bounded above by a polynomial in n and
m.

m We use big ‘0O’ to indicate upper bounds.

= For example, we may say that an algorithm is 0(n?). That means the
algorithm takes at most cn? steps for some constant c. E.g., at most
14n? steps.

m We say that an algorithm runs in exponential time whenever it does not
run in polynomial time.
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8. INTRACTABILITY 7=
L Big-O notation describes the asymptotic upper bound of f(n) & tonaustm

i i 45

m f(n)= O(g(n)): iff there exist positive constants ¢ and n, such that
f(n)< cg(n) for all n 2 n,

m O-notation to give an upper bound on a function.

cg(n)

:i[ﬂ}l

n
My .
f(n)= 0(g(n))
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W “Easy” Problems 22/ TONGJISEM

m Sorting a list of n numbers: [42, 3, 17, 26, ..., 100]

nlog,n

= Multiplying two n x n matrices:

3527 1554
1689 5128 6

1 24610)(7615) ( n
93212 9235 8

n
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8. INTRACTABILITY

L “Easy” Problems(cont.) & ronusen
m The Shortest Path Problem (i.e. “Google Maps”)

Depending on implementation:
O(IVI?) or O(IE| + [VILog|V])

L :'x_l_l--e"l_ f_Hj Ed Sga r D]J kSt 'a

https://www.cs.hmc.edu/~csbgrad/cs5/LectureSlides/class07-black-
16-functional5.pptx
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L “Easy” Problems( & TONGJISEM

= “Polynomial Time” = “Efficient”

n, n?, n3, n*, n°,...

How about
v’ sorting SometI;lng like n
’ ° 0 0 logz n H
v matrix multiplication

v" shortest paths

The “class” P
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L “Hard” Problems &2 TONGJISEM

m The Travelling Salesperson Problem

New York

San Francisco

Claremont

Brute Force? Greed?
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L The Hamiltonian Path Problem &) TONGJISEM

Athens, GA

Homer, GA
Rome, GA

Damascus, GA
Bethlehem, GA

Those are some

peachy names! CAMEA
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L n2 Versus 2" &2 TONGJISEM

m The Geoff-O-Matic performs 10° operations/sec

n=10 n =30 n =50 n=70
nz 100 900 2500 4900

<1 sec <1 sec <1 sec <1 sec
AL 1024 109 1015 102

<1 sec 1 sec 11.6 days 31,688
N ' years

<1sec 106 years 10°7 years 103 years
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L Tractability &/ TONGJISEM

m Some problems are intractable:
as they grow large, we are unable to solve them in reasonable
time
* Not in polynomial time: O(2"), O(n!), O(n"),

m What constitutes reasonable time?
* Standard working definition: polynomial time

* On an input of size n the worst-case running time is O(nk)
for some constant k

* Polynomial time: O(1), O(n lg n), O(n2), O(n3),

]
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L Optimization/Decision Problems &2/ TONGJISEM

m Optimization Problems
* An optimization problem is one which asks, “What is the
optimal solution to problem X?”
* Examples:
»Maximal Matching
»Traveling Salesperson
»Minimum Spanning Tree
m Decision Problems
* An decision problem is one with yes/no answer
* Examples:
»Does a graph G have a MST of weight < W?

]
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% Optimization/Decision Problems (cont.) & TONGJISEM

m An optimization problem tries to find an optimal solution

m A decision problem tries to answer a yes/no question
m Many problems will have decision and optimization versions
* Eg: Traveling salesman problem
»optimization: find hamiltonian cycle of minimum weight
»decision: is there a hamiltonian cycle of weight < k

m Some problems are decidable, but intractable:
as they grow large, we are unable to solve them in reasonable time

* Is there a polynomial-time algorithm that solves the problem?
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L The class P &) TONGJISEM

m The class P consists of those problems that are solvable
in polynomial time.

m More specifically, they are problems that can be solved
in time O(nk) for some constant k, where n is the size of
the input to the problem.

m The key is that n is the size of input.

“Easy” Problems

]
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L The class P (cont.) \E2 TONGJI SEM

m P: the class of decision problems that have polynomial-time
deterministic algorithms.
* That is, they are solvable in O(p(n)), where p(n) is a polynomial on n
* A deterministic algorithm is (essentially) one that always computes
the correct answer

= Why polynomial?
* if not, very inefficient
* nice closure properties
»the sum and composition of two polynomials are always
polynomials too

]
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L Complexity class P @9) ronecem

m Deterministic in nature

m Solved by conventional computers in polynomial time

°*0(1) Constant

* O(log n) Sub-linear

* O(n) Linear

* O(n log n) Nearly Linear
* O(n?) Quadratic

= Polynomial upper and lower bounds

]
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TONGJI SEM

L Sample class P

m Shortest Path Dijkstra algorithm
O(n?).

m Eulerian path O(E)

m MST O(ElogV)

= Merge Sort

= Huffman Algorithm: Constructing
the Optimal Binary (Huffman) Tree.

m Others

Single-Source Bottleneck Path Algorithm Faster than Sorting

for Sparse Graphs

Ran Duan *!, Kaifeng Lyu ', Hongxun Wu #!, and Yuanhang Xie 9!

nstitute for Interdisciplinary Information Sciences, Tsinghua University

Abstract

In a directed graph G = (V, E) with a capacity on every edge, a bottleneck path (or widest
path) between two vertices is a path maximizing the minimum capacity of edges in the path.
For the single-source all-destination version of this problem in directed graphs, the previous best
algorithm runs in O(m+nlogn) (m = |E| and n = |V|) time, by Dijkstra search with Fibonacci
heap [Fredman and Tarjan 1987). We improve this time bound to O(my/Togn), thus it is the
first algorithm which breaks the time bound of classic Fibonacci heap when m = o(ry/logn). It
is a Las-Vegas randomized approach. By contrast, the s-t bottleneck path has an algorithm with
running time O(mf(m, n)) [Chechik et al. 2016], where 3(m,n) = min{k =1 log™ n < =),

= n
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L NP &) TONG)I SEM

= NP is not the same as non-polynomial
complexity/running time. NP does not stand for not
polynomial.

2 NP = Non-Deterministic polynomial time
m NP means verifiable in polynomial time
m Verifiable?

* |If we are somehow given a ‘certificate’ of a solution
we can verify the legitimacy in polynomial time
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L Sample Problems in NP & TONGJISEM
m MST

m Maximal matching
m Hamiltonian Cycle (Traveling Salesman)
m Graph Coloring
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4 Hamiltonian cycles & TONGJI SEM

m Determining whether a directed graph has a Hamiltonian
cycle does not have a polynomial time algorithm (yet!)

m However if someone was to give you a sequence of vertices,
determining whether or not that sequence forms a
Hamiltonian cycle can be done in polynomial time.

m Therefore Hamiltonian cycles are in NP.

“Hard” Problem?
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5 NP problems &2 TONGJI SEM

m Graph theory has these fascinating (annoying?) pairs of
problems

* Shortest path algorithms?

* Longest path is NP complete (we’ll define NP
complete later)

* Eulerian tours (visit every vertex but cover every
edge only once, even degree etc). Solvable in
polynomial time!

* Hamiltonian tours (visit every vertex, no vertices can
be repeated). NP complete

]
CAMEA LN AAcSE  EQUIS

sEsmreMBAzE A E M




8. INTRACTABILITY N o

% Review: P And NP problems & TONGJISEM

m P = set of problems that can be solved in polynomial time

m NP = set of problems for which a solution can be verified in
polynomial time

mClearly P — NP
m Open question: Does P = NP?
° Most suspect not

* An August 2010 claim of proof that P # NP, by Vinay
Deolalikar, researcher at HP Labs, Palo Alto, has flaws

]
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% NP-complete problems & TONGJI SEM

m A decision problem D is NP-complete iff

1) D € NP

2) Every problem in NP is polynomial-time reducible
toD
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L Reduction 2/ TONGJI SEM

m A problem R can be reduced to another problem Q if any
instance of R can be rephrased to an instance of Q, the solution
to which provides a solution to the instance of R

* This rephrasing is called a transformation

m Intuitively: If R reduces in polynomial time to Q, R is “no harder
to solve” than Q

m Example: lcm(m, n) =m * n / gcd(m, n),

lcm(m,n) problem is reduced to gcd(m, n) problem

]
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4 Polynomial-Time Reducibility

m Language L is polynomial-
time reducible to language
M if there is a function
computable in polynomial
time that takes an input x of
L and transforms it to an
input f(x) of M, such that x
is a member of L if and only
if f(x) is a member of M.

a“—

Independent Set

'

Vertex Cover

'

Set Cover

Any problem in NP

|

SAT

|

__35AT

Hamiltonian Cycle Graph Coloring 3-dimensional Matching

| l

Hamiltonian Path Subset Sum

:

Traveling Salesman
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% NP-Hard and NP-Complete & TONGIISEM
m If Ris polynomial-time reducible to Q, we denote this R <,Q

m Definition of NP-Hard and NP-Complete:
* |f all problems R € NP are polynomial-time reducible to Q, then
Q is NP-Hard
Note: An NP-Hard problem need not be NP.

* An NP-Hard problem is at least as hard as the NP-complete
problems.
* We say Q is NP-Complete if Q is NP-Hard
and Q € NP
m If R<,Qand Ris NP-Hard, Q is also NP-Hard (why?)

]
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8. INTRACTABILITY

NP-Hard

NP-Complete

P=NP =
NP-Complete

. Complexity

P #NP P =NP

https://upload.wikimedia.org/wikipedia/commons/a/a0/P _np np-complete np-hard.svg
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% NP-Hard and NP-Complete (cont.) &) roncnsem
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https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

8. INTRACTABILITY
% NP-Hard and NP-Complete (cont.)
A

Not verifiablg in
polynomial time

NP-Complete

Verifiable in
polynomial time

------------------

. .

P .
. .
o H

Complexity

P=NP =
NP-Complete

T Il B 2245
&2 TONGJISEM

https://upload.wikimedia.org/wikipedia/commons/a/a0/P _np np-complete np-hard.svg
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Chapter 8. INTRACTABILITY « Brief summary ) Il 9F 2245

=27 TONGJISEM

Objective :

Key Concepts :
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