
Optimization Theory and Methods 2025 Autumn

魏可佶 kejiwei@tongji.edu.cn
https://kejiwei.github.io/

Chapter 8. INTRACTABILITY

Actual number of steps taken by an algorithm and the actual run times
will depend on specific problem instance.

 So let us aim to find an upper bound on the number of steps taken by an
algorithm.

A step is an arithmetic operation like addition, subtraction,
multiplication, division, comparison, assignment, etc.

As the problem size (that is, number of nodes and arcs for the case of
network problems) increases, the run time and the number of steps will
obviously increase.

 So our upper bounds on the run times will be functions of number of
nodes (n) and number of arcs (m).

We are quite satisfied if we are within a constant factor. Otherwise the
task becomes too complex.

Chapter 8. INTRACTABILITY

We say that an algorithm runs in polynomial time if the number of
steps taken by the algorithm is bounded above by a polynomial in 𝑛𝑛 and
𝑚𝑚.

We use big ‘𝑶𝑶’ to indicate upper bounds.

For example, we may say that an algorithm is 𝑶𝑶 𝒏𝒏𝟐𝟐 . That means the
algorithm takes at most c𝑛𝑛2 steps for some constant 𝑐𝑐. E.g., at most
14𝑛𝑛2 steps.

We say that an algorithm runs in exponential time whenever it does not
run in polynomial time.

8. INTRACTABILITY
⤷ Big-O notation describes the asymptotic upper bound of f(n)

 f(n)= O(g(n)): iff there exist positive constants c and n0 such that
f(n)≤ cg(n) for all n ≥ n0

O-notation to give an upper bound on a function.

8. INTRACTABILITY
⤷ “Easy” Problems

 Sorting a list of n numbers: [42, 3, 17, 26, … , 100]

 Multiplying two n x n matrices:

3 5 2 7
1 6 8 9
2 4 6 10
9 3 2 12

() 1 5 5 4
5 12 8 6
7 6 1 5
9 23 5 8

() = ()
n

n

n n

n

n log2 n

8. INTRACTABILITY

⤷ “Easy” Problems(cont.)
 The Shortest Path Problem (i.e. “Google Maps”)

Edsgar Dijkstra

https://www.cs.hmc.edu/~cs5grad/cs5/LectureSlides/class07-black-
16-functional5.pptx

Depending on implementation:
O(|V|2) or O(|E| + |V|Log|V|)

https://www.cs.hmc.edu/%7Ecs5grad/cs5/LectureSlides/class07-black-16-functional5.pptx

8. INTRACTABILITY
⤷ “Easy” Problems(cont.)

 “Polynomial Time” = “Efficient”

n, n2, n3, n4, n5,…

How about
something like n
log2 n ? sorting

 matrix multiplication
 shortest paths

The “class” P

8. INTRACTABILITY
⤷ “Hard” Problems

 The Travelling Salesperson Problem
New York

Paris

San Francisco

Claremont

366

5625

1545

4664
5868

Brute Force? Greed?

2417

6060

2566

3627
5563

8. INTRACTABILITY
⤷ The Hamiltonian Path Problem

Rome, GA

Athens, GA

Homer, GA

Damascus, GA
Bethlehem, GA

Those are some
peachy names!

8. INTRACTABILITY
⤷ n2 Versus 2n

The Geoff-O-Matic performs 109 operations/sec

n2

2n

n!

n = 10 n = 30 n = 50 n = 70

100
< 1 sec

900
< 1 sec

2500
< 1 sec

1024
< 1 sec

109

1 sec
1015

11.6 days

4900
< 1 sec

1021

31,688
years

< 1 sec 1016 years 1057 years 1093 years

8. INTRACTABILITY
⤷ Tractability

 Some problems are intractable:
as they grow large, we are unable to solve them in reasonable
time

• Not in polynomial time: O(2n), O(n!), O(nn),

What constitutes reasonable time?

• Standard working definition: polynomial time

• On an input of size n the worst-case running time is O(nk)
for some constant k

• Polynomial time: O(1), O(n lg n), O(n2), O(n3),

8. INTRACTABILITY
⤷ Optimization/Decision Problems

Optimization Problems
• An optimization problem is one which asks, “What is the

optimal solution to problem X?”
• Examples:
Maximal Matching
Traveling Salesperson
Minimum Spanning Tree

Decision Problems
• An decision problem is one with yes/no answer
• Examples:
Does a graph G have a MST of weight ≤ W?

8. INTRACTABILITY
⤷ Optimization/Decision Problems (cont.)

An optimization problem tries to find an optimal solution

A decision problem tries to answer a yes/no question

Many problems will have decision and optimization versions

• Eg: Traveling salesman problem

optimization: find hamiltonian cycle of minimum weight

decision: is there a hamiltonian cycle of weight ≤ k

 Some problems are decidable, but intractable:
as they grow large, we are unable to solve them in reasonable time

• Is there a polynomial-time algorithm that solves the problem?

8. INTRACTABILITY
⤷ The class P

The class P consists of those problems that are solvable
in polynomial time.

More specifically, they are problems that can be solved
in time O(nk) for some constant k, where n is the size of
the input to the problem.

The key is that n is the size of input.

“Easy” Problems

8. INTRACTABILITY

⤷ The class P (cont.)

P: the class of decision problems that have polynomial-time
deterministic algorithms.

• That is, they are solvable in O(p(n)), where p(n) is a polynomial on n
• A deterministic algorithm is (essentially) one that always computes

the correct answer

Why polynomial?
• if not, very inefficient
• nice closure properties
the sum and composition of two polynomials are always

polynomials too

8. INTRACTABILITY
⤷ Complexity class P

Deterministic in nature

 Solved by conventional computers in polynomial time

• O(1) Constant

• O(log n) Sub-linear

• O(n) Linear

• O(n log n) Nearly Linear

• O(n2) Quadratic

Polynomial upper and lower bounds

8. INTRACTABILITY
⤷ Sample class P

 Shortest Path Dijkstra algorithm
O(n2).

Eulerian path O(E)

MST O(ElogV)

Merge Sort

Huffman Algorithm: Constructing
the Optimal Binary (Huffman) Tree.

Others

8. INTRACTABILITY
⤷ NP

NP is not the same as non-polynomial
complexity/running time. NP does not stand for not
polynomial.

NP = Non-Deterministic polynomial time

NP means verifiable in polynomial time

Verifiable?

• If we are somehow given a ‘certificate’ of a solution
we can verify the legitimacy in polynomial time

8. INTRACTABILITY
⤷ Sample Problems in NP

MST
Maximal matching
Hamiltonian Cycle (Traveling Salesman)
Graph Coloring

8. INTRACTABILITY
⤷ Hamiltonian cycles

Determining whether a directed graph has a Hamiltonian
cycle does not have a polynomial time algorithm (yet!)

However if someone was to give you a sequence of vertices,
determining whether or not that sequence forms a
Hamiltonian cycle can be done in polynomial time.

Therefore Hamiltonian cycles are in NP.

“Hard” Problem?

8. INTRACTABILITY
⤷ NP problems

Graph theory has these fascinating (annoying?) pairs of
problems

• Shortest path algorithms?

• Longest path is NP complete (we’ll define NP
complete later)

• Eulerian tours (visit every vertex but cover every
edge only once, even degree etc). Solvable in
polynomial time!

• Hamiltonian tours (visit every vertex, no vertices can
be repeated). NP complete

8. INTRACTABILITY
⤷ Review: P And NP problems

P = set of problems that can be solved in polynomial time

NP = set of problems for which a solution can be verified in
polynomial time

Clearly P ⊆ NP

Open question: Does P = NP?

• Most suspect not

• An August 2010 claim of proof that P ≠ NP, by Vinay
Deolalikar, researcher at HP Labs, Palo Alto, has flaws

8. INTRACTABILITY
⤷ NP-complete problems

A decision problem D is NP-complete iff

1）D ∈ NP

2）Every problem in NP is polynomial-time reducible
to D

8. INTRACTABILITY
⤷ Reduction

A problem R can be reduced to another problem Q if any
instance of R can be rephrased to an instance of Q, the solution
to which provides a solution to the instance of R

• This rephrasing is called a transformation

 Intuitively: If R reduces in polynomial time to Q, R is “no harder
to solve” than Q

Example: lcm(m, n) = m * n / gcd(m, n),

lcm(m,n) problem is reduced to gcd(m, n) problem

8. INTRACTABILITY
⤷ Polynomial-Time Reducibility

 Language L is polynomial-
time reducible to language
M if there is a function
computable in polynomial
time that takes an input x of
L and transforms it to an
input f(x) of M, such that x
is a member of L if and only
if f(x) is a member of M.

8. INTRACTABILITY

⤷ NP-Hard and NP-Complete
 If R is polynomial-time reducible to Q, we denote this R ≤p Q

 Definition of NP-Hard and NP-Complete:

• If all problems R ∈ NP are polynomial-time reducible to Q, then
Q is NP-Hard

Note: An NP-Hard problem need not be NP.

• An NP-Hard problem is at least as hard as the NP-complete
problems.

• We say Q is NP-Complete if Q is NP-Hard
and Q ∈ NP

 If R ≤p Q and R is NP-Hard, Q is also NP-Hard (why?)

8. INTRACTABILITY

⤷ NP-Hard and NP-Complete (cont.)

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

8. INTRACTABILITY

⤷ NP-Hard and NP-Complete (cont.)

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

Verifiable in
polynomial time

Not verifiable in
polynomial time

https://upload.wikimedia.org/wikipedia/commons/a/a0/P_np_np-complete_np-hard.svg

Chapter 8. INTRACTABILITY • Brief summary

Objective :

Key Concepts ：

	�Optimization Theory and Methods 2025 Autumn�
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29

